9 Οκτωβρίου, 2024

Παρέμβαση για κοροναϊό Covid-19: «Το μεγαλύτερο φιάσκο του αιώνα;»

Διακεκριμένος Έλληνας καθηγητής του Stanford χαρακτηρίζει τον κορωνοϊό Covid-19 πιθανόν φιάσκο.

Ενα εξαιρετικά ενδιαφέρον άρθρο, που βλέπει με διαφορετική ματιά την κρίση του κοροναϊού και αναρωτιέται αν πρόκειται για το φιάσκο του αιώνα τα όσα συμβαίνουν σήμερα, έγραψε ο ο καθηγητής Ιατρικής, Επιδημιολογίας και Υγείας του Πληθυσμού και Στατιστικής στο Πανεπιστήμιο του Stanford, Γιάννης Ιωαννίδης.

Το άρθρο δημοσιεύτηκε στο αμερικάνικο ενημερωτικό ιατρικό περιοδικό statnews.com και ασκεί κριτική στο γεγονός ότι πολλές χώρες έχουν αποφασίσει να πάρουν σκληρά μέτρα χωρίς ουσιαστικά να έχουν αξιόπιστα στοιχεία για την πανδημία.

«Εάν αποφασίσουμε να πηδήσουμε από το βράχο, χρειαζόμαστε κάποια στοιχεία για να ξέρουμε αν είναι λογική μια τέτοια ενέργεια και ποιες είναι οι πιθανότητες να προσγειωθούμε κάπου ασφαλείς», καταλήγει στο συμπέρασμα ο καθηγητής.

Διαβάστε το άρθρο και βγάλτε τα συμπεράσματά σας:

«Ενώ βρισκόμαστε μπροστά στην πανδημία του αιώνα, ίσως ταυτόχρονα να αποτελέσει και το φιάσκο του αιώνα.

Την ώρα που όλοι ζητούν καλύτερη πληροφόρηση, από εκείνους πoυ χρησιμοποιούν μοντέλα ανάλυσης της επιδημίας μέχρι τις κυβερνήσεις και τον κόσμο που περιορίζεται ή μπαίνει σε καραντίνα, δεν έχουμε αξιόπιστα δεδομένα για το πόσοι άνθρωποι προσβάλλονται από τον κορωνοϊό. Η πληροφόρηση είναι αναγκαία για την καθοδηγήσει τις αποφάσεις και δράσεις μας και για να δούμε τις επιπτώσεις τους.

Δρακόντεια μέτρα έχουν επιβληθεί σε πολλές χώρες, τα οποία θα είναι ανεκτά από όλους αν η πανδημία υποχωρήσει, είτε από μόνη της είτε λόγω των μέτρων. Για πόσο καιρό όμως θα πρέπει να ακολουθήσουμε αυτά τα μέτρα, και τι θα γίνει αν η πανδημία συνεχίσει για μεγάλο διάστημα; Πώς θα ξέρουμε αν τα μέτρα είναι στη σωστή κατεύθυνση ή τελικά προκαλούν περισσότερο κακό;
Ένα εμβόλιο θα ήταν σίγουρα η λύση, αλλά είμαστε μήνες μακρυά από μια τέτοια επιλογή. Δεν έχουμε λοιπόν καμία εικόνα για τις επιπτώσεις ενός παρατεταμένου lock-down.

Τα δεδομένα που έχουμε συλλέξει μέχρι στιγμής για την εξέλιξη της επιδημίας είναι παντελώς αναξιόπιστα. Λόγω των περιορισμένων διαγνωστικών αναλύσεων, έχουμε χάσει πιθανότατα την πλειοψηφία των ασθενών που προσβλήθηκαν από τον ιό. Και δεν ξέρουμε αν τα πραγματικά κρούσματα είναι 3πλάσια ή 300 φορές παραπάνω. Ακόμη και σήμερα, 3 μήνες μετά την έναρξη της έξαρσης του ιού, οι περισσότερες χώρες δεν μπορούν να πραγματοποιήσουν μεγάλο αριθμό διαγνωστικών αναλύσεων, και καμία χώρα δεν έχει αξιόπιστα δεδομένα για τον επιπολασμό του ιού σε τυχαίο αντιπροσωπευτικό δείγμα του πληθυσμού.

Το φιάσκο της έλλειψης δεδομένων δημιουργεί τεράστια αβεβαιότητα για τη θνητότητα από τον ιό. Τα επίσημα νούμερα είναι ανούσια μιας και οι διαγνωστικές αναλύσεις πραγματοποιούνται κυρίως σε αυτούς με σοβαρή νόσο και κακή πρόγνωση. Και αυτή η κατάσταση μπορεί να επιδεινωθεί όσο εξελίσσεται η επιδημία.

Ο μοναδικός κλειστός πληθυσμός που έχει εκτεταμένα διερευνηθεί ήταν οι επιβάτες του κρουαζιερόπλοιου Diamond Princess. Εκεί παρατηρήθηκε θνητότητα 1%, αλλά και πάλι ήταν πληθυσμός σχετικά μεγάλης ηλικίας στους οποίους η θνητότητα είναι έτσι κι αλλιώς αυξημένη. Παρόλο που με τα δεδομένα από το κρουαζιερόπλοιο θα μπορούσε να υπολογιστεί θνητότητα 0,125% σε μια χώρα σαν τις ΗΠΑ σύμφωνα με την ηλικιακή κατανομή του πληθυσμού, είναι μόλις 7 οι θάνατοι, οπότε το περιθώριο ασφαλείας των υπολογισμών θνητότητας βρίσκεται μεταξύ 0,025% και 0,625%. Είναι επίσης πιθανό κάποιοι επιβάτες που προσβλήθηκαν να κατέληξαν αργότερα. Επίσης, οι επιβάτες δεν αποτελούσαν αντιπροσωπευτικό δείγμα του πληθυσμού και θα μπορούσαν, παράδειγμα, να είχαν περισσότερα χρόνια νοσήματα (που επηρεάζουν τη θνητότητα) από τον γενικό πληθυσμό. Προσθέτοντας αυτές τους επιπλέον παράγοντες αβεβαιότητας, εύλογες εκτιμήσεις για τη θνητότητα στον γενικό πληθυσμό των ΗΠΑ κυμαίνονται από 0,05% έως 1%.

Αυτό το τεράστιο εύρος στη θνητότητα επηρεάζει σημαντικά την εκτίμηση για το πόσο σοβαρή είναι η πανδημία και τι πρέπει να γίνει. Ποσοστό θνητότητας της τάξης του 0,05% είναι χαμηλότερο από την εποχική γρίπη. Εάν αυτό είναι πραγματικό ποσοστό, το lock-down σε όλο τον κόσμο, με ενδεχομένως τεράστιες κοινωνικές και οικονομικές συνέπειες μπορεί να είναι εντελώς παράλογο.

Είναι σαν ένας ελέφαντας να δέχεται επίθεση από μια γάτα. Στην απόγνωση του προσπαθώντας να αποφύγει τη γάτα, ο ελέφαντας πηδάει από ένα βράχο και πεθαίνει.

Μπορεί το ποσοστό θνητότητας των περιπτώσεων Covid-19 να είναι τόσο χαμηλό; Όχι, λένε κάποιοι, δείχνοντας το υψηλό ποσοστό στους ηλικιωμένους. Ωστόσο, ακόμη και μερικοί λεγόμενοι «ήπιοι» κοροναϊοί ή οι κοροναϊοί του κοινού κρυολογήματος, που είναι γνωστοί εδώ και δεκαετίες, μπορούν να έχουν θνητότητα μέχρι και 8% όταν μολύνουν τους ηλικιωμένους σε γηροκομεία. Στην πραγματικότητα, αυτοί οι «ήπιοι» κοροναϊοί προσβάλλουν δεκάδες εκατομμύρια ανθρώπους κάθε χρόνο και αντιπροσωπεύουν το 3% έως 11% αυτών που νοσηλεύονται στις ΗΠΑ με λοίμωξη κατωτέρου αναπνευστικού κάθε χειμώνα.

Αυτοί οι «ήπιοι» κοροναϊοί μπορεί να εμπλέκονται σε αρκετές χιλιάδες θανάτους κάθε χρόνο παγκοσμίως, αν και η συντριπτική τους πλειοψηφία δεν εξακριβώνεται με ακριβή διαγνωστικά τεστ. Αντ ‘αυτού, χάνονται ως «θόρυβος» μεταξύ 60 εκατομμυρίων θανάτων από διάφορες αιτίες κάθε χρόνο.

Παρόλο που τα συστήματα επιτήρησης υπάρχουν από καιρό για τη γρίπη, η ασθένεια επιβεβαιώνεται από ένα εργαστήριο σε μια μικρή μειοψηφία περιπτώσεων. Στις ΗΠΑ για παράδειγμα, μέχρι στιγμής έχουν εξετασθεί 1.073.976 δείγματα και 222.552 (20.7%) είναι θετικά για τη γρίπη. Την ίδια περίοδο, ο εκτιμώμενος αριθμός παρόμοιων με γρίπη ασθενειών (γριπώδη συνδρομή)κυμαίνεται μεταξύ 36.000.000 και 51.000.000, με 22.000 έως 55.000 εκτιμώμενους θανάτους.

Σημειώστε την αβεβαιότητα σχετικά με τους θανάτους από γριπώδη συνδρομή: 2,5 φορές διαφορά μεταξύ ελάχιστης και μέγιστης εκτίμησης, που αντιστοιχεί σε δεκάδες χιλιάδες θανάτους. Κάθε χρόνο, ορισμένοι από αυτούς τους θανάτους οφείλονται σε γρίπη και μερικοί από άλλους ιούς, όπως οι κοροναϊοί του κοινού κρυολογήματος.

Αυτοψίες

Σε μια σειρά αυτοψιών όπου έγινε εξέταση για αναπνευστικούς ιούς σε δείγματα από 57 ηλικιωμένους ανθρώπους που πέθαναν κατά τη διάρκεια της εποχής της γρίπης την περίοδο 2016 έως 2017, ανιχνεύθηκαν ιοί της γρίπης στο 18% των δειγμάτων, ενώ οποιοδήποτε άλλο είδος αναπνευστικού ιού βρέθηκε στο 47%. Σε μερικούς ανθρώπους που πεθαίνουν από παθογόνους ιούς του αναπνευστικού συστήματος, περισσότεροι από ένας ιός εντοπίζονται κατά την αυτοψία, συνοδό επιμόλυνση από βακτήρια. Μια θετική δοκιμή για τον κοροναϊό δεν σημαίνει απαραίτητα ότι ο ιός αυτός είναι πάντα υπεύθυνος για την κατάρρευση του ασθενούς.

Εάν υποθέσουμε ότι το ποσοστό θνησιμότητας μεταξύ των ατόμων που έχουν μολυνθεί από το κοροναϊό είναι 0,3% στον γενικό πληθυσμό – μια εικασία από την ανάλυση του κρουαζιερόπλοιου Diamond Princess – και ότι το 1% του πληθυσμού των ΗΠΑ έχει προσβληθεί (περίπου 3,3 εκατομμύρια άτομα), αυτό θα μεταφράζεται σε περίπου 10.000 θανάτους. Αυτό ακούγεται σαν ένας τεράστιος αριθμός, αλλά είναι θαμμένος μέσα στο «θόρυβο» της εκτίμησης των θανάτων από «γριπώδη συνδρομή».

Εάν δεν γνωρίζαμε για έναν νέο ιό εκεί έξω και δεν είχαμε ελέγξει τα άτομα με δοκιμές PCR, ο αριθμός των συνολικών θανάτων που οφείλονται σε «γριπώδη συνδρομή» δεν θα φαινόταν ασυνήθιστο φέτος. Το πολύ, ίσως να παρατηρούσαμε ότι η γρίπη αυτή τη σεζόν φαίνεται να είναι κάπως χειρότερη από το μέσο όρο. Η κάλυψη των μέσων ενημέρωσης θα ήταν μικρότερη από ό, τι για ένα παιχνίδι NBA μεταξύ των δύο πιο αδιάφορων ομάδων.

Κάποιοι ανησυχούν ότι οι 68 θάνατοι από το κοροναϊό στις ΗΠΑ στις 16 Μαρτίου θα αυξηθούν εκθετικά σε 680, 6.800, 68.000, 680.000 … μαζί με παρόμοια καταστροφικά σχέδια σε όλο τον κόσμο. Είναι ένα ρεαλιστικό σενάριο ή κακή επιστημονική φαντασία; Πώς μπορούμε να πούμε σε ποιο σημείο μια τέτοια καμπύλη μπορεί να σταματήσει;

Η πιο πολύτιμη πληροφορία για την απάντηση σε αυτά τα ερωτήματα θα ήταν να γνωρίζουμε τον επιπολασμό της λοίμωξης από κοροναϊό σε ένα τυχαίο δείγμα πληθυσμού και να επαναλαμβάνουμε αυτή την άσκηση σε τακτά χρονικά διαστήματα για να εκτιμήσουμε την επίπτωση νέων μολύνσεων. Δυστυχώς, αυτή είναι η πληροφορία που δεν έχουμε.

Αφού δεν έχουμε δεδομένα, η «προετοιμασία για τα χειρότερα» οδηγεί σε ακραία μέτρα κοινωνικής απομόνωσης και lock-down. Δυστυχώς, δεν γνωρίζουμε εάν τα μέτρα αυτά λειτουργούν. Το κλείσιμο σχολείων, για παράδειγμα, μπορεί να μειώσει τα ποσοστά μετάδοσης. Μπορεί όμως να αποδειχθεί αναποτελεσματικό στην περίπτωση που τα παιδιά κοινωνικοποιούνται ούτως ή άλλως, εάν το κλείσιμο του σχολείου οδηγεί τα παιδιά να περάσουν περισσότερο χρόνο με ευπαθή ηλικιωμένα μέλη της οικογένειας, εάν τα παιδιά στο σπίτι διαταράξουν την ικανότητα των γονιών τους να εργαστούν και πολλά άλλα. Το κλείσιμο σχολείων μπορεί επίσης να μειώσει τις πιθανότητες εμφάνισης ανοσίας της αγέλης σε μια ηλικιακή ομάδα που δεν κάνει σοβαρή νόσο.

Αυτή ήταν η λογική πίσω από τη διαφορετική στάση του Ηνωμένου Βασιλείου, που κρατά τα σχολεία ανοιχτά, τουλάχιστον μέχρι την ώρα που γράφεται το άρθρο. Ελλείψει δεδομένων σχετικά με την πραγματική πορεία της επιδημίας, δεν γνωρίζουμε εάν αυτή η προοπτική ήταν λαμπρή ή καταστροφική.

Η επιπέδωση της καμπύλης για να αποφευχθεί η κατάρρευση του συστήματος υγείας είναι ως σκέψη σωστή – θεωρητικά. Ένα γράφημα που έχει γίνει viral στα μέσα μαζικής ενημέρωσης και στα κοινωνικά μέσα δείχνει πως η επιπέδωση της καμπύλης μειώνει τον όγκο της επιδημίας που είναι πάνω από το όριο του τι μπορεί να χειριστεί το σύστημα υγείας ανά πάσα στιγμή.

Πίεση στο σύστημα υγείας
Ωστόσο, εάν η πίεση στο σύστημα υγείας ξεπεράσει τα όριά του, η πλειοψηφία των επιπλέον θανάτων μπορεί να μην οφείλεται σε κοροναϊό, αλλά σε άλλες κοινές ασθένειες και καταστάσεις όπως καρδιακές προσβολές, εγκεφαλικά επεισόδια, τραύμα, αιμορραγία και άλλα παρόμοια που δεν θα αντιμετωπίζονται επαρκώς. Αν η επιδημία κατακλύσει το σύστημα υγείας και τα ακραία μέτρα έχουν μέτρια αποτελεσματικότητα, τότε η ισοπέδωση της καμπύλης μπορεί να χειροτερεύσει τα πράγματα:

Αντί να πιεστεί υπερβολικά σε μια σύντομη, οξεία φάση, το σύστημα υγείας θα παραμείνει πιεσμένο για μια παρατεταμένη περίοδο . Αυτός είναι άλλος λόγος που χρειαζόμαστε δεδομένα για την ακριβή καταγραφή της επιδημίας.

Ένα από συμπεράσματα είναι ότι δεν γνωρίζουμε πόσο χρόνο μπορούν να διατηρηθούν μέτρα κοινωνικής απομάκρυνσης και lock-down χωρίς σοβαρές συνέπειες για την οικονομία, την κοινωνία και την ψυχική υγεία. Μπορεί να προκύψουν απρόβλεπτες εξελίξεις, όπως η οικονομική κρίση, οι αναταραχές, οι εμφύλιες συγκρούσεις, ο πόλεμος και η κατάρρευση του κοινωνικού ιστού. Κατ’ελάχιστον, χρειαζόμαστε αμερόληπτα δεδομένα επιπολασμού και επίπτωσης για το εξελισσόμενο μολυσματικό φορτίο που θα καθοδηγήσει τη λήψη αποφάσεων.

Στο πιο απαισιόδοξο σενάριο, το οποίο δεν υιοθετώ, εάν ο νέος κοροναϊός προσβάλλει το 60% του παγκόσμιου πληθυσμού και το 1% των μολυσμένων ανθρώπων πεθαίνουν, αυτό θα μεταφραστεί σε περισσότερους από 40 εκατομμύρια θανάτους παγκοσμίως, επίπτωση όμοια την πανδημία γρίπης του 1918. Η συντριπτική πλειοψηφία αυτής της εκατόμβης θα είναι άτομα με περιορισμένο προσδόκιμο ζωής. Αυτό είναι σε αντίθεση με το 1918, όταν πέθαναν πολλοί νέοι.

Κάποιος μπορεί μόνο να ελπίζει ότι, όπως και το 1918, η ζωή θα συνεχιστεί. Αντίθετα, με το lock-down για μήνες, αν όχι έτη, η ζωή σταματάει σε μεγάλο βαθμό, οι βραχυπρόθεσμες και μακροπρόθεσμες συνέπειες είναι εντελώς άγνωστες και μπορεί να διακυβευθούν τελικά δισεκατομμύρια, και όχι μόνο εκατομμύρια, ζωές.

Εάν αποφασίσουμε να πηδήσουμε από το βράχο, χρειαζόμαστε κάποια στοιχεία για να ξέρουμε αν είναι λογική μια τέτοια ενέργεια και ποιες είναι οι πιθανότητες να προσγειωθούμε κάπου ασφαλείς».

Ποιος είναι ο καθηγητής

Ο Ιωάννης Π. Α. Ιωαννίδης (γεννηθείς στις 21 Αυγούστου 1965) είναι Αμερικανός γιατρός-επιστήμονας και συγγραφέας που έχει συνεισφέρει στην τεκμηριωμένη ιατρική, την επιδημιολογία, την επιστήμη των δεδομένων και την κλινική έρευνα. Επιπλέον, έχει πρωτοπορήσει στον τομέα της μετα-έρευνας (έρευνα για την έρευνα).

Ο Ιωαννίδης μελετά την ίδια την επιστημονική έρευνα, ειδικά στην κλινική ιατρική και τις κοινωνικές επιστήμες. Το βιβλίο που έγραψε το 2005 «Γιατί τα περισσότερα δημοσιευμένα ευρήματα έρευνας είναι ψεύτικα» έχει διαβαστεί όσο λίγα.

Ο Ιωαννίδης είναι Καθηγητής της Ιατρικής, της Έρευνας και της Πολιτικής για την Υγεία και της Βιοϊατρικής Επιστήμης Δεδομένων, στην Ιατρική Σχολή του Πανεπιστημίου του Στάνφορντ και καθηγητής Στατιστικής στη Σχολή Ανθρωπιστικών Επιστημών και Επιστημών του Πανεπιστημίου του Στάνφορντ. Είναι διευθυντής του Κέντρου Ερευνών Πρόληψης του Στάνφορντ και συν-διευθυντής, μαζί με τον Steven N. Goodman, του Κέντρου Καινοτομίας Μετα-Έρευνας

Είναι επίσης ο αρχισυντάκτης της Ευρωπαϊκής Εφημερίδας Κλινικής Έρευνας. Διετέλεσε Πρόεδρος του Τμήματος Υγιεινής και Επιδημιολογίας της Ιατρικής Σχολής του Πανεπιστημίου Ιωαννίνων, καθώς και βοηθός καθηγητής στο Τμήμα Ιατρικής του Πανεπιστημίου Tufts.

Reduce bounce rates